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Recap of Precipitation and Temperature forecasts and
skill analysis

Recent precipitation and temperature forecasts and skill
analysis

Initial skill analysis of S2S products based on NMME
forecasts

Summary



North American Multimodel Ensemble (NMME)
Forecasts
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About 110
scenarios
Updates monthly




Recap of NMME based forecasts
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March precipitation forecasts
seems to be skilfull
consistently going back to
about 5 months in advance.
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i \l J June and July temperature

forecasts seem to be most
skillful consistently.
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Skill of individual
models varies.

In general the skill of
NMME is equal to or
more than the skill of
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Current Forecasts

e .Below normal March precipitation in Southern California.
e Above normal June and July temperature forecasts in much of interior CA

and Nevada.
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Sub-seasonal to
Seasonal (S2S5)
forecast skill analysis



e QObserved Precipitation and temperature:

o Livneh et al., 2013 gridded dataset
was used.

o The dataset is spatially aggregated to
1X1 degree to match the spatial
resolution of the NMME models
forecasts.

e NMME forecasts:

o 3 of the NMME models (NASA'’s
GEOS-5, CanCM3 and CanCM4) are
used.

o Total 30 ensemble members.




Forecast of mean P, Tmax and Tmin
at S2S scale
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Precipitation
Forecast skill

The skill is the highest at
short lead-times (<2 weeks).
The skill at seasonal scale (1
to 3 months) exists in
forecasts made in early Jan
and Feb.

Seasonal scale skill exists in
Temperature forecasts made
in April through June.



Forecast of frequency of extreme
events over 4 weeks




Observed frequency of “extreme events”
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Forecasting frequency or extreme lIemperature events
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Forecasting frequency of
extreme precipitation events

Limited skill in forecasting the
frequency of extreme precipitation
and heatwave level (>90%-ile P,
Tmax or Tmin) events. Promising T
skill exists in June forecasts,
especially over non-costal areas.

Skill in April T forecast is promising
because of its implication on
snowmelt.



Summary

e ‘“Limited” seasonal (>1 month) precipitation and temperature forecast skill.

e It's important to look at historical skill before utilizing operational forecasts.

e March precipitation, and June and July temperature seem to be most skilfull
at seasonal scale.

e For the upcoming season, below normal March precipitation in Southern
California, and above normal June, July temperature is likely.

e The NMME models (3 of them analyzed) have limited yet promising level of
sub-seasonal skill (less than 1 month).

e Sub-seasonal skill analysis to be continued. Analysis to include large scale
climate oscillations as well.
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